If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2-11v-8=-4v-8
We move all terms to the left:
v^2-11v-8-(-4v-8)=0
We get rid of parentheses
v^2-11v+4v+8-8=0
We add all the numbers together, and all the variables
v^2-7v=0
a = 1; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·1·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*1}=\frac{0}{2} =0 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*1}=\frac{14}{2} =7 $
| 12x+8=13x+5 | | 5.25=-0.5x+7 | | 8/n=5 | | 8=7.2+1x | | 4m-8=10m+10 | | -x+18=9 | | 101+13x=133 | | 3y-3=6(y-5) | | 63=x+2x+(2x-5) | | 4x=5=45 | | -8(v-3)=-6v+32 | | y^2+2y-29=51 | | 2(x+6)=3(x+9) | | 8x+6)−(7x+9)= | | y+88=-10 | | A=1/43.14d^2 | | 252=125^x+1 | | 10p−3=2(12+4p)−7p | | 10p−3=2(12+4p)−7p= | | 6x+7=-3+3x+16 | | 84=12r | | 7x+3x=-8+6x | | (6x-6)=180 | | 3(7x-5)=87+3x | | 10x+2=-8x+32 | | t-4=-27 | | 2x+20=5x-40 | | a=-5+a | | -5x^2+960x+14400=0 | | 31/x=27/100 | | 4(x-2)^2-7=21 | | 3+5x=2x-6 |